skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dadgostari, F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. During an epidemic, it can be difficult to get an estimate of the actual number of people infected at any given time. This is due to multiple reasons, including some cases being asymptomatic and sick people not seeking healthcare for mild symptoms, among others. Large scale random sampling of the population for testing can be expensive, especially in the early stages of an epidemic, when tests are scarce. Here we show how an adaptive prevalence testing method can be developed to obtain a good estimate of the disease burden by learning to intelligently allocate a small number of tests for random testing of the population. Our approach uses a combination of an agent-based simulation and deep learning in an active sensing paradigm. We show that it is possible to get a good state estimate with relatively minimal prevalence testing, and that the trained system adapts quickly and performs well even if the disease parameters change. 
    more » « less